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Chapter 6
Normal Probability Distributions

6-2 The Standard Normal Distribution
6-3 Applications of Normal Distributions

6-4 Sampling Distributions and Estimators
6-5   The Central Limit Theorem

6-6   Normal as Approximation to Binomial
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Continuous random variable
Normal distribution

Overview
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Uniform Distribution is a probability 
distribution in which the continuous 

random variable values are spread 
evenly over the range of possibilities; 

the graph results in a rectangular shape.
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Density Curve (or probability density 
function is the graph of a continuous 
probability distribution.

Definitions

1.  The total area under the curve must 
equal 1.

2.  Every point on the curve must have a 
vertical height that is 0 or greater. 
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Because the total area under 
the density curve is equal to 1, 

there is a correspondence 
between area and probability.
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Using Area to 
Find Probability

Is the total area equal to 1?
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Heights of Adult Men and Women

Why is the red curve on the right?

Why does the blue curve have higher height?
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Definition
Standard Normal Distribution:

a normal probability distribution that has a 
mean of 0 and a standard deviation of 1, and the

total area under its density curve is equal to 1.
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Definition
Standard Normal Distribution:

a normal probability distribution that has a 
mean of 0 and a standard deviation of 1.

Figure 5-5
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P(a < z < b) 
denotes the probability that the z score is 

between a and b
P(z > a)

denotes the probability  that the z score is 
greater than a
P(z < a)

denotes the probability  that the z score is  
less than a

Notation
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Table A-2

Inside front cover of text book

Formulas and Tables card

Appendix
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To find:
z Score
the distance along horizontal scale of the 
standard normal distribution; refer to the 
leftmost column and top row of Table A-2.

Area
the region under the curve;  refer to the 
values in the body of Table A-2.
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Example:  If thermometers have an average (mean) 
reading of 0 degrees and a standard deviation of 1 degree 
for freezing water, and if one thermometer is randomly 
selected, find the probability that, at the freezing point of 
water, the reading is less than 1.58 degrees.  

P(z < 1.58) = 

Figure 5-6
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Example:  If thermometers have an average (mean) 
reading of 0 degrees and a standard deviation of 1 degree 
for freezing water and if one thermometer is randomly 
selected, find the probability that, at the freezing point of 
water, the reading is less than 1.58 degrees.  

The probability that the chosen thermometer will measure 
freezing water less than 1.58 degrees is 0.9429.

P (z < 1.58) = 0.9429
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Example:  If thermometers have an average (mean) 
reading of 0 degrees and a standard deviation of 1 degree 
for freezing water and if one thermometer is randomly 
selected, find the probability that, at the freezing point of 
water, the reading is less than 1.58 degrees.  

P (z < 1.58) = 0.9429

94.29% of the thermometers have readings less than 
1.58 degrees.
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Using TI:
Standard Normal Distribution

( )P z a<
1) 2nd VARS( DISTR )

2) Arrow down to normalcdf(

3) enter

4) VSNN , a , 0 , 1 ) enter

VSNN Very Small Negative Number
Mean Standard Deviation
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Using TI: 
Standard Normal Distribution

Example: Find P( z<1.58 ) 

1) Select 2nd, VARS, 
arrow down to get to 
normalcdf( enter to 
select

2) key in 

-10000, 1.58,0,1 )
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Using TI: 
Standard Normal Distribution
Example: Find P( z<1.58) 

3) Enter to execute this 
operation and get the 
final answer.

This result was obtained earlier by directly using 
the Standard Normal Distribution table. 
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Example:  If thermometers have an average (mean) 
reading of 0 degrees and a standard deviation of 1 degree 
for freezing water, and if one thermometer is randomly 
selected, find the probability that it reads (at the freezing 
point of water) above –1.23 degrees.  

The probability that the chosen thermometer with a reading 
above –1.23 degrees is 0.8907.

P (z > –1.23) = 0.8907
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Example:  If thermometers have an average (mean) 
reading of 0 degrees and a standard deviation of 1 degree 
for freezing water, and if one thermometer is randomly 
selected, find the probability that it reads (at the freezing 
point of water) above –1.23 degrees.  

P (z > –1.23) = 0.8907

89.07% of the thermometers have readings above –1.23
degrees.
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Using TI:
Standard Normal Distribution

( )P z a>

1) 2nd VARS( DISTR )

2) Arrow down to normalcdf(

3) enter

4) a , VLPN , 0 , 1 ) enter

VLPN Very Large Positive Number

Mean Standard Deviation
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Using TI: 
Standard Normal Distribution

Example: Find P( z> – 1.23 ) 

1) Select 2nd, VARS, 
arrow down to get to 
normalcdf( enter to 
select

2) key in 

– 1.23, 1000 , 0 , 1 )
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Using TI: 
Standard Normal Distribution
Example: Find P( z> – 1.23 ) 

3) Enter to execute this 
operation and get the 
final answer.

This result was obtained earlier by directly using 
the Standard Normal Distribution table. 
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Example:  A thermometer is randomly selected. 
Find the probability that it reads (at the freezing point of 
water) between –2.00 and 1.50 degrees.  

P (z < –2.00) = 0.0228
P (z < 1.50) = 0.9332
P (–2.00 < z < 1.50) = 
0.9332 – 0.0228 = 0.9104

The probability that the chosen thermometer has a 
reading between – 2.00 and 1.50 degrees is 0.9104.
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Example:  A thermometer is randomly selected. 
Find the probability that it reads (at the freezing point of 
water) between –2.00 and 1.50 degrees.  

If many thermometers are selected and tested at the 
freezing point of water, then 91.04% of them will read 
between –2.00 and 1.50 degrees.

P (z < –2.00) = 0.0228
P (z < 1.50) = 0.9332
P (–2.00 < z < 1.50) = 
0.9332 – 0.0228 = 0.9104
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Using TI:
Standard Normal Distribution

( )P a z b< <

1) 2nd VARS( DISTR )

2) Arrow down to normalcdf(

3) enter

4) a , b ,  0 , 1 ) enter

Mean Standard Deviation
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Using TI: 
Standard Normal Distribution

Example: Find P( – 2.00 < z < 1.50 ) 

1) Select 2nd, VARS, 
arrow down to get to 
normalcdf( enter to 
select

2) key in 

– 2.00, 1.50 , 0 , 1 )
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Using TI: 
Standard Normal Distribution
Example: Find P( – 2.00 < z < 1.50 ) 

3) Enter to execute this 
operation and get the 
final answer.

This result was obtained earlier by directly using 
the Standard Normal Distribution table. 
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Finding a z - score when given a 
probability Using Table A-2

1.  Draw a bell-shaped curve, draw the centerline, and 
identify the region under the curve that corresponds to 
the given probability.  If that region is not a cumulative 
region from the left, work instead with a known region 
that is a cumulative region from the left. 

2. Using the cumulative area from the left, locate the 
closest probability in the body of Table A-2 and identify 
the corresponding z score.
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Finding z Scores 
when Given Probabilities

Figure 5-10
Finding the 95th Percentile

5% or 0.05

(z score will be positive)
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Finding z Scores 
when Given Probabilities

Figure 5-10
Finding the 95th Percentile

1.645

5% or 0.05

(z score will be positive)
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Using TI:
Standard Normal Distribution

( )z MP a L A< =

1) 2nd VARS( DISTR )

2) Arrow down to invNorm(

3) enter

4) LMA, 0 , 1 ) enter

LMA Left Most Area

Mean Standard Deviation
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Using TI: 
Standard Normal Distribution

Example: Find  the z - score if P(  z < a )=0.95 

1) Select 2nd, VARS, 
arrow down to get to 
invNorm( enter to 
select

2) key in 

0.95 , 0 , 1 )
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Using TI: 
Standard Normal Distribution

3) Enter to execute this 
operation and get the 
final answer.

This result was obtained earlier by directly using 
the Standard Normal Distribution table. 

Example: Find  the z - score if P(  z < a )=0.95 
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Figure 5-11 
Finding the Bottom 2.5% and Upper 2.5%

(One z score will be negative and the other positive)

Finding z Scores 
when Given Probabilities Slide 38
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Figure 5-11 
Finding the Bottom 2.5% and Upper 2.5%

(One z score will be negative and the other positive)

Finding z Scores 
when Given Probabilities
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Figure 5-11 
Finding the Bottom 2.5% and Upper 2.5%

(One z score will be negative and the other positive)

Finding z Scores 
when Given Probabilities Slide 40
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Using TI: 
Standard Normal Distribution

Example: Find  the z - score if P(  z < a )=0.025 

1) Select 2nd, VARS, 
arrow down to get to 
invNorm( enter to 
select

2) key in 

0.025 , 0 , 1 )
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Using TI: 
Standard Normal Distribution

3) Enter to execute this 
operation and get the 
final answer.

This result was obtained earlier by directly using 
the Standard Normal Distribution table. 

Example: Find  the z - score if P(  z < a )=0.025 
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Nonstandard Normal 
Distributions

If μ ≠ 0 or σ ≠ 1 (or both), we will 
convert values to standard scores using 
Formula 5-2, then procedures for working 
with all normal distributions are the same 
as those for the standard normal 
distribution.

Formula 5-2
x – µ
σz =
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Figure 5-12

Converting  to Standard 
Normal Distribution

x – μ
σz =
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• The sitting height (from seat to top of head) of drivers 
must be considered in the design of a new car model.  
Men have sitting heights that are normally distributed 
with a mean of 36.0 in. and a standard deviation of 
1.4 in. (based on anthropometric survey data from 
Gordon, Clauser, et al.).  Engineers have provided 
plans that can accommodate men with sitting heights 
up to 38.8 in., but taller men cannot fit.  If a man is 
randomly selected, find the probability that he has a 
sitting height less than 38.8 in.  Based on that result, 
is the current engineering design feasible?

Probability of Sitting Heights 
Less Than 38.8 Inches 
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Probability of Sitting Heights 
Less Than 38.8 Inches 

z = 38.8 – 36.0
1.4

=  2.00
σ =   1.4 
μ =  36.0

Figure 5-13
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Probability of Sitting Heights 
Less Than 38.8 Inches 

σ =   1.4 
μ =  36.0

Figure 5-13

P ( x < 38.8 in.) = P(z < 2)
= 0.9772
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Using TI:
Non-Standard Normal Distribution

( )P x a<

1) 2nd VARS( DISTR )

2) Arrow down to normalcdf(

3) enter

4) VSNN , a , μ , σ ) enter

VSNN Very Small Negative Number
Mean Standard Deviation
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Using TI: 
Standard Normal Distribution

Example: Find P( x < 38.8 ) when μ=36.0 and σ=1.4.  

1) Select 2nd, VARS, 
arrow down to get to 
normalcdf( enter to 
select

2) key in 

–1000 , 38.8 , 36.0,1.4 )

Mean Standard Deviation
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Using TI: 
Non-Standard Normal Distribution

3) Enter to execute this 
operation and get the 
final answer.

This result was obtained earlier by converting to 
the Standard Normal Distribution and then using 

the table. 

Example: Find P( x < 38.8 ) when μ=36.0 and σ=1.4.  
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In the Chapter Problem, we noted that the Air Force 
had been using the ACES-II ejection seats designed 
for men weighing between 140 lb and 211 lb.  Given 
that women’s weights are normally distributed with a 
mean of 143 lb and a standard deviation of 29 lb 
(based on data from the National Health survey), 
what percentage of women have weights that are 
within those limits?

Probability of Weight between 
140 pounds and 211 pounds
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Probability of Weight between 
140 pounds and 211 pounds

z = 211 – 143
29

=  2.34σ =    29
μ =  143

Figure 5-14
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Probability of Weight between 
140 pounds and 211 pounds

Figure 5-14

σ =    29
μ =  143 z = 140 – 143

29
=  –0.10
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Probability of Weight between 
140 pounds and 211 pounds

Figure 5-14

σ =    29
μ =  143 P( –0.10 < z < 2.34 ) =
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Probability of Weight between 
140 pounds and 211 pounds

Figure 5-14

σ =    29
μ =  143 0.9904 – 0.4602 = 0.5302
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Probability of Weight between 
140 pounds and 211 pounds

Figure 5-14

σ =    29
μ =  143 There is a 0.5302 probability of randomly 

selecting a woman with 
a weight between 140 and 211 lbs.
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Probability of Weight between 
140 pounds and 211 pounds

σ =    29
μ =  143

Figure 5-14

OR - 53.02% of women have 
weights between 140 lb and 211 lb.

Slide 57

Copyright © 2004 Pearson Education, Inc.

Using TI:
Non-Standard Normal Distribution

( )P a x b< <

1) 2nd VARS( DISTR )

2) Arrow down to normalcdf(

3) enter

4) a , b ,  μ , σ ) enter

Mean Standard Deviation
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Using TI: 
Non-Standard Normal Distribution

Example: Find P( 140 <  x < 211 ) when μ=143 & σ=29.

1) Select 2nd, VARS, 
arrow down to get to 
normalcdf( enter to 
select

2) key in 

140 , 211 , 143 , 29 )
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Using TI: 
Non-Standard Normal Distribution

3) Enter to execute this 
operation and get the 
final answer.

Example: Find P( 140 <  x < 211 ) when μ=143 & σ=29.

This result was obtained earlier by converting to 
the Standard Normal Distribution and then using 

the table. 

Why is this answer slightly different from the earlier 
method?

Slide 60

Copyright © 2004 Pearson Education, Inc.

Finding a z - score when given a 
probability Using Table A-2

1.  Draw a bell-shaped curve, draw the centerline, and 
identify the region under the curve that corresponds to 
the given probability.  If that region is not a cumulative 
region from the left, work instead with a known region 
that is a cumulative region from the left. 

2. Using the cumulative area from the left, locate the 
closest probability in the body of Table A-2 and identify 
the corresponding z score.
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 1.  Don’t confuse z scores and areas. z scores are 
distances along the horizontal scale, but areas 
are regions under the normal curve.  Table A-2 
lists z scores in the left column and across the top 
row, but areas are found in the body of the table.

 2.  Choose the correct (right/left) side of the graph.
 3.  A z score must be negative whenever it is located 

to the left half of the normal distribution.
 4.  Areas (or probabilities) are positive or zero values, 

but they are never negative.              

Cautions to keep in mind
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Procedure for Finding Values 
Using Table A-2 and Formula 5-2

1. Sketch a normal distribution curve, enter the given probability or 
percentage in the appropriate region of the graph, and identify the x
value(s) being sought.

2. Use Table A-2 to find the z score corresponding to the cumulative left 
area bounded by x.  Refer to the BODY of Table A-2 to find the closest 
area, then identify the corresponding z score. 

3. Using Formula 5-2, enter the values for µ, σ, and the z score found in 
step 2, then solve for x.

x = µ + (z • σ) (Another form of Formula 5-2)

(If z is located to the left of the mean, be sure that it is a 
negative number.)

4. Refer to the sketch of the curve to verify that the solution makes sense 
in the context of the graph and the context of the problem.
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Find P98 for Hip 
Breadths of Men

z = 2.05

Figure 5-15
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Find P98 for Hip 
Breadths of Men

Figure 5-15

x = μ + (z ● σ)
x = 14.4 + (2.05 • 1.0)
x = 16.45
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Find P98 for Hip 
Breadths of Men

Figure 5-15

The hip breadth of 16.5 in. separates 
the lowest 98% from the highest 2%
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Find P98 for Hip 
Breadths of Men

Figure 5-15

Seats designed for a hip breadth up to 
16.5 in. will fit 98% of men.
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Using TI:
Non-Standard Normal Distribution

( )x MP a L A< =

1) 2nd VARS( DISTR )

2) Arrow down to invNorm(

3) enter

4) LMA, μ , σ ) enter

LMA Left Most Area

Mean Standard Deviation
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Using TI: 
Non-Standard Normal Distribution

Example: Find  the x - score if P(  x < a )=0.98 
when μ=14.4 and σ=1.0. 

1) Select 2nd, VARS, 
arrow down to get to 
invNorm( enter to 
select

2) key in 

0.98 , 14.4 , 1.1 )

Mean Standard deviation
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Using TI: 
Standard Normal Distribution

3) Enter to execute this 
operation and get the 
final answer.

This result was obtained earlier by directly using 
the Standard Normal Distribution table. 

Example: Find  the x - score if P(  x < a )=0.98 
when μ=14.4 and σ=1.0. 
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45% 50%

Finding P05 for 
Grips of Women

Figure 5-16
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45% 50%

Finding P05 for 
Grips of Women

Figure 5-16
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45% 50%

Finding P05 for 
Grips of Women

Figure 5-16

x = 27.0 + (–1.645 • 1.3) = 24.8615
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45% 50%

Finding P05 for 
Grips of Women

Figure 5-16

The forward grip of 24.9 in. (rounded) 
separates the top 95% from the others.
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Using TI: 
Non-Standard Normal Distribution

Example: Find  the x - score if P(  x < a )=0.05 
when μ=27.0 and σ=1.3. 

1) Select 2nd, VARS, 
arrow down to get to 
invNorm( enter to 
select

2) key in 

0.05 , 27.0 , 1.3 )

Mean
Standard deviation
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Using TI: 
Non-Standard Normal Distribution

3) Enter to execute this 
operation and get the 
final answer.

This result was obtained earlier by directly using 
the Standard Normal Distribution table. 

Example: Find  the x - score if P(  x < a )=0.05 
when μ=27.0 and σ=1.3. 
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REMEMBER!

Make the z score negative if the 
value is located to the left (below)  
the mean. Otherwise, the z score 
will be positive.
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Sampling Distribution of the mean 
is the probability distribution of     

sample means, with all 
samples having the same sample 

size n.

Definition Slide 78
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Sampling Variability:
The value of a statistic, such as the 
sample mean x, depends on the 
particular values included in the 
sample.  

Definition
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Consider the population of 2, 4, and 6. 
Select sample of size 2 with replacement.

Sample Sample Mean
2 , 2 2
2 , 4 3
2 , 6 4
4 , 2 3
4 , 4 4
4 , 6 5
6 , 2 4
6 , 4 5
6 , 6 6

Sample Mean Probability

2 1/9
3 2/9
4 3/9
5 2/9
6 1/9
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Consider the population of 2, 4, and 6. 
Select sample of size 2 with replacement.

Now 

use your calculator to compute the mean and 
standard deviation of the sample means.

a) Enter sample means into L1

b) Enter corresponding probabilities into L2.

c) Stat, Calc, 1-var stat, L1, L2, enter

Now 

a) Enter element of the population into L3.

b) Stat, Calc, 1-var stat, L1, L2, enter
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Consider the population of 2, 4, and 6. 
Select sample of size 2 with replacement.

Did you notice that the mean of the sample 
means is equal to the mean of the population?

Xμ μ=
Now divide the population standard deviation by the 
square root of the each sample size, in this case 2. 

X n
σσ =

Is this answer familiar to you?
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Interpretation of 
Sampling Distributions

We can see that when using a sample statistic to 
estimate a population parameter, some statistics are 
good in the sense that they target the population 
parameter and are therefore likely to yield good 
results.  Such statistics are called unbiased 
estimators. 

Statistics that target population parameters: mean, 
variance, proportion

Statistics that do not target population parameters: 
median, range, standard deviation
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Central Limit Theorem

1. The random variable x has a distribution (which 
may or may not be normal) with mean µ and 
standard deviation σ.

2. Samples all of the same size n are randomly 
selected from the population of x values.

Given:
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Conclusions:

Central Limit Theorem

1. The distribution of the sample means will, 
as the sample size increases, approach a 
normal distribution.

2. The mean of the sample means will be the 
population mean .μ

3. The standard deviation of the sample means 

will approach .
n

σ
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Practical Rules 
Commonly Used:

1. For samples of size n larger than 30, the distribution of 
the sample means can be approximated reasonably well 
by a normal distribution.  The approximation gets better 
as the sample size n becomes larger.

2. If the original population is itself normally distributed, 
then the sample means will be normally distributed for 
any sample size n (not just the values of n larger than 30). 
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Notation
the mean of the sample means

the standard deviation of sample mean

   
(often called standard error of the mean)

µx = µ

σx = σ
n
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Using TI
W h e n  u s in g  n o rm a lc d f  w i th  s a m p le  s iz e  1,
e n te r  th e  fo llo w in g  fo u r  e n te r ie s  in  th e  o rd e r :
n o rm a lc d f (  L V , R V , , ) .

n

μ σ

=

( 24) when 26& 1.5P x μ σ> = =Example:

( 24) normalcdf(24,1000, 26,1.5)P x > =

Answer:
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Using TI

( 24) when 10, 26 & 1.5P x n μ σ> = = =
1.5( 24) normalcdf(24,1000, 26, )
10

P x > =

Example:

Answer:

W h e n  u s in g  n o rm a lc d f  w i th  s a m p le  s i z e  1,
e n te r  th e  f o llo w in g  f o u r  e n te r i e s  in  th e o rd e r :

n o rm a lc d f (  L V ,  R V , , ) .

n

n
σ

μ

>
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Example: Given the population of men has normally 
distributed weights with a mean of 172 lb and a standard 
deviation of 29 lb, 

a)  if one man is randomly selected, find the probability 
that his weight is greater than 167 lb.

b)  if 12 different men are randomly selected, find the 
probability that their mean weight is greater than 167 lb.
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Example: Given the population of men has normally 
distributed weights with a mean of 172 lb and a standard 
deviation of 29 lb, 
a)  if one man is randomly selected, the probability that 
his weight is greater than 167 lb. is  0.5675.

Use your 
Calculator to 

verify this 
number.



Slide 91

Copyright © 2004 Pearson Education, Inc.

Example: Given the population of men has normally 
distributed weights with a mean of 172 lb and a standard 
deviation of 29 lb, 
b)  if 12 different men are randomly selected, find the 
probability that their mean weight is greater than 167 lb. 

Use your 
Calculator to 

verify this 
number.

Slide 92

Copyright © 2004 Pearson Education, Inc.

Example: Given the population of men has normally 
distributed weights with a mean of 172 lb and a standard 
deviation of 29 lb,

b)  if 12 different men are randomly selected, their mean 
weight is greater than 167 lb.

P(x > 167) = 0.7257
It is much easier for an individual to deviate from the 
mean than it is for a group of 12 to deviate from the mean.

a)  if one man is randomly selected, find the probability 
that his weight is greater than 167 lb.

P(x > 167) = 0.5675
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Sampling Without
Replacement

If  n > 0.05 N

N – nσx = σ
n N – 1

finite population
correction factor
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Approximate a Binomial Distribution
with a Normal Distribution if:

np ≥ 5

nq ≥ 5

then µ = np and σ =     npq   

and the random variable has

distribution.
(normal)

a
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Procedure for Using a Normal 
Distribution to Approximate 

a Binomial Distribution
1.  Establish that the normal distribution is a suitable 

approximation to the binomial distribution by verifying 
np ≥ 5 and nq ≥ 5.

2.  Find the values of the parameters µ and σ by 
calculating µ = np and σ =     npq.

3.  Identify the discrete value of x (the number of 
successes).   Change the discrete value x by replacing 
it with the interval from x – 0.5 to x + 0.5.  Draw a 
normal curve and enter the values of µ , σ, and either x
– 0.5 or x + 0.5, as appropriate.  

continued
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4. Change x by replacing it with x – 0.5 or x + 0.5, as 
appropriate. 

5.  Find the area corresponding to the desired probability.

continued

Procedure for Using a Normal 
Distribution to Approximate 

a Binomial Distribution
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Definition
When we use the normal distribution 

(which is continuous) as an 
approximation to the binomial 

distribution (which is discrete), a 
continuity correction is made to a 

discrete whole number x in the binomial 
distribution by representing the single 

value x by the interval from 
x – 0.5 to x + 0.5.
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Procedure for 
Continuity Corrections 

1.  When using the normal distribution as an approximation to the 
binomial distribution, always use the continuity correction.

2.  In using the continuity correction, first identify the discrete whole 
number x that is relevant to the binomial probability problem.

3.  Draw a normal distribution centered about µ, then draw a vertical 
strip area centered over x . Mark the left side of the strip with the 

number x – 0.5, and mark the right side with x + 0.5.  For x =120, 
draw a strip from 119.5 to 120.5. Consider the area of the strip to 
represent the probability of discrete number x.

continued
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4.  Now determine whether the value of x itself should be included in 
the probability you want.  Next, determine whether you want the 
probability of at least x, at most x, more than x, fewer than x, or 

exactly x.  Shade the area to the right or left of the strip, as 

appropriate; also shade the interior of the strip itself if and only if x
itself is to be included. The total shaded region corresponds to 
probability being sought.

continued
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Figure 5-24

Finding the Probability of 
“…………..”

120 Men Among 200 Accepted Applicants
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x = exactly 120

Interval represents discrete number 120
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Figure 5-25

x = at least 120
= 120, 121, 122, . . .

x = more than 120
= 121, 122, 123, . . .

x = at most 120
= 0, 1, . . . 118, 119, 120

x = fewer than 120
= 0, 1, . . . 118, 119


