

ABLE A-2 Standard Normal (z) Distribution: Cumulative Area from the LEFT											
z	.00	.01	.02	.03	.04	.05	.06	.07		,08	.09
-3.50											
and											
lower	.0001										
-3.4	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	÷ 9	0003	.000
-3.3	.0005	.0005	.0005	.0004	.0004	.0004	.0004	.0004	10	0004	.0003
-3.2	.0007	.0007	.0006	.0006	.0006	.0006	.0006	.0005	. 1	0005	.0005
-3.1	.0010	.0009	.0009	.0009	.0008	.0008	.0008	.0008	1	0007	.0007
-3.0	.0013	.0013	.0013	.0012	.0012	.0011	.0011	.0011	1	0010	.0010
-2.9	.0019	.0018	.0018	.0017	.0016	.0016	.0015	.0015	1	0014	.0014
-2.8	.0026	.0025	.0024	.0023	.0023	.0022	.0021	.0021		0020	.0015
-2.7	.0035	.0034	.0033	.0032	.0031	.0030	.0029	.0028	- 0	0027	.0026
-2.6	.0047	.0045	.0044	.0043	.0041	.0040	.0039	.0038	1	0037	.0036
-2.5	.0062	.0060	.0059	.0057	,0055	.0054	.0052	.0051	. 1	0049	.0048
-2.4	.0082	.0080	.0078	.0075	.0073	.0071	.0069	.0068		0066	.0064
-2.3	.0107	.0104	.0102	.0099	.0096	.0094	.0091	.0089	1	0087	.0084
-2.2	.0139	.0136	.0132	.0129	.0125	.0122	.0119	.0116	1	0113	.0110
-2.1	.0179	.0174	.0170	.0166	.0162	.0158	.0154	.0150	1	0146	.0143
-2.0	.0228	.0222	.0217	.0212	.0207	.0202	.0197	.0192	. 1	0188	.0183
-1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	1	0239	.0233
-1.8	.0359	.0351	.0344	.0336	.0329	.0322	.0314	.0307	1	0301	.0294
-1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392	.0384	1	0375	.0361
-1.6	.0548	.0537	.0526	.0516	.0505	.0495	.0485	.0475	,	0465	.045
-1.5	.0668	.0655	.0643	.0630	.0618	.0606	.0594	.0582	1	0571	.055

To find:

Slide 13

z Score

the <u>distance</u> along horizontal scale of the standard normal distribution; refer to the <u>leftmost column and top row</u> of Table A-2.

Area

the <u>region</u> under the curve; refer to the values in the <u>body</u> of Table A-2.

Copyright © 2004 Pearson Education, Inc.

									1	Slide I
ANLE A	-2 (cor	tinued) C	umulative	Area from	the LEFT					
	1 00		03	07	04	of	D.C.	07	00	00
-z	300.2	10.	.302	,0.5	.04	-105	.00	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	,7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
LI	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	,8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890

Using TI: Non-Standar	d Normal Distribution	Slide 57
P(a < x < b)	
1) 2nd VARS	(DISTR)	
2) Arrow do	wn to normalcdf(
3) enter		
4) a , b , µ ,	σ) enter	
Mean	Standard Deviation	
	Copyright © 2004 Pearson Education, Inc.	

Slide 77

Definition

Sampling Distribution of the mean is the probability distribution of sample means, with all samples having the same sample size *n*.

Copyright © 2004 Pearson Education, Inc

Definition

Slide 78

Sampling Variability:

The value of a statistic, such as the sample mean \overline{x} , depends on the particular values included in the sample.

Copyright © 2004 Pearson Education, In

Consider the population of 2, 4, and 6. Select sample of size 2 with replacement.

Sample	Sample Mean	Sample Mean	Probability
2,2	2	2	1/9
2,4	3	3	2/9
2,6	4	4	3/9
4,2	3	5	2/9
4,4	4	6	1/9
4,6	5		-12
6,2	4		
6,4	5		
6,6	6		

Slide 79

Slide 81

Consider the population of 2, 4, and 6. Select sample of size 2 with replacement.

Did you notice that the mean of the sample means is equal to the mean of the population?

$$\mu_{\overline{x}} = \mu$$

Now divide the population standard deviation by the square root of the each sample size, in this case 2.

Is this answer familiar to you?

$$\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}}$$

Copyright © 2004 Pearson Education, Inc

Copyright © 2004 Pearson Education, Inc.

Central Limit Theorem

Given:

- 1. The random variable x has a distribution (which may or may not be normal) with mean μ and standard deviation σ .
- 2. Samples all of the same size *n* are randomly selected from the population of *x* values.

Copyright © 2004 Pearson Education, Inc

will approach $\frac{\sigma}{\sqrt{n}}$.

Copyright © 2004 Pearson Education, Inc.

Practical Rules Commonly Used:

Slide 85

- 1. For samples of size *n* larger than 30, the distribution of the sample means can be approximated reasonably well by a normal distribution. The approximation gets better as the sample size *n* becomes larger.
- If the original population is itself normally distributed, then the sample means will be normally distributed for <u>any sample size</u> n (not just the values of n larger than 30).

Copyright © 2004 Pearson Education, Inc

Notation the mean of the sample means

Slide 86

 $\boldsymbol{\mu}_{\bar{x}} = \boldsymbol{\mu}$

the standard deviation of sample mean

$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$$

(often called standard error of the mean)

Copyright © 2004 Pearson Education, Inc

Using TI When using normalcdf with sample size n = 1, enter the following four enteries in the order: normalcdf(LV, RV, μ , σ). Example: P(x > 24) when $\mu = 26 \& \sigma = 1.5$ P(x > 24) = normalcdf(24,1000, 26,1.5)Answer: Copyright © 2004 Pearson Education, Inc.

Copyright © 2004 Pearson Education, In

Sampling Without Replacement If n > 0.05 N $\sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}} \sqrt{\frac{N-n}{N-1}}$ finite population correction factor

Procedure for Using a Normal Distribution to Approximate a Binomial Distribution

- 1. Establish that the normal distribution is a suitable approximation to the binomial distribution by verifying $np \ge 5$ and $nq \ge 5$.
- 2. Find the values of the parameters μ and σ by calculating $\mu = np$ and $\sigma = \sqrt{npq}$.
- Identify the discrete value of x (the number of successes). Change the discrete value x by replacing it with the interval from x 0.5 to x + 0.5. Draw a normal curve and enter the values of μ, σ, and either x 0.5 or x + 0.5, as appropriate.

Copyright © 2004 Pearson Education, Inc.

Procedure for Using a Normal Distribution to Approximate a Binomial Distribution

continued

- 4. Change x by replacing it with x 0.5 or x + 0.5, as appropriate.
- 5. Find the area corresponding to the desired probability.

Copyright © 2004 Pearson Education, Inc.

