Chapter 6
Normal Probability Distributions
6-2
The Standard Normal Distribution
6-3

Definitions

Uniform Distribution is a probability distribution in which the continuous random variable values are spread evenly over the range of possibilities; the graph results in a rectangular shape.

Overview

Continuous random variable
Normal distribution

Copyright © 2004 Pearson Education, Inc.

Definitions

Density Curve (or probability density function is the graph of a continuous probability distribution.

1. The total area under the curve must equal 1.
2. Every point on the curve must have a vertical height that is 0 or greater.

Definition

Standard Normal Distribution:

a normal probability distribution that has a mean of 0 and a standard deviation of 1.

Figure 5-5
Copyright © 2004 Pearson Education, Inc.

Table A-2
\% Inside front cover of text book
*Formulas and Tables card
*Appendix

To find:

Z Score

the distance along horizontal scale of the standard normal distribution; refer to the leftmost column and top row of Table A-2.

Area

the region under the curve; refer to the values in the body of Table A-2.

										lide 15
Table A-2 (cander		(continued) Cumulative Area from the LEFT								
z	. 00	. 01	. 02	${ }_{0} 03$.04	.as	. 06	. 97	08	09
00	5000	5040	Scoso	5120	5160	5199	. 5239	5279	5319	5359
0.1	5398	5438	5478	5517	5557	5596	5636	5675	5714	. 5753
0.2	5793	5832	5871	5910	5988	5987	. 0026	${ }_{6} 6064$.6103 .680	. 6141
03	.6179	. 6217	625s	. 6293	6331	6268	. 6406	6438	.6480	6517
04	. 6554	. 6599	.6628	. 6664	6700	6736	. 6772	${ }^{68508}$. 684	. 6879
0.5	. 6915	. 6950	. 6.785	. 7019	.7054 7389	. 7088	.7123 744	7157 7486	. 71719	. 7224
0.6	.7257	. 7291	. 7324	. 7357	.7389	. 7722	. 7444	. 7486	7817	. 7549
07	.7880	. 7711	. 7642	. 7673	7704	. 734	. 775	.7948	. 7823	.7852
08	. 7881	7910	. 2939	.7967	. 7995	. 823	. 8051	S078	8106	8133
0.9	\$159	8186	\$212	. 223	8264	. 283	2315	8340	8265	. 8389
1.0	8413	${ }^{8438}$	8461	8488	8588	8531	. 2554	8577	.8599	8621
1.1	8643	8665	865\%	.8708	8729	8749	. 8770	8790	\$810	8880
1.2	8849	8869	8088	8007	895	8944	.8962	S980	S907	9015
13	. 9032	. 9049	.9066	. 2×2	9099	9115	9131	9147	9162	9177
1.4	. 9192	. 2207	. 9222	9236	. 9251	9265	. 9279	. 2292	. 906	. 9319
1s	9332	9345	. 9357	9370	9382	9394	. 9406	9418	9429	9441
1.6	9452	.9463	9674	. 984	9995	9505	. 9515	. 9525	. 9335	. 9545
1.7	9554	. 9564	. 9573	9582	. 9591	. 9599	. 9688	9616	. 963	9633
18	9641	. 979	96856	9654	9671	9678	.9886	9693	.8090	. 9706
1.9	9713	9719	.9726	973	9738	974	9750	. 9756	9761	. 9767
20	9772	. 97778	. 9783	9788	-9793	9788	. 2803	9808	9812	. 9817
21	9821	. 9826	. 9830	. 983	98388	9842	. 9846	. 9850	.984	. 9857
22	9861	9864	.9868	. 9871	. 9875	9978	. 9881	. 9884	.9887	9890
Copyright © 2004 Pearson Education, Inc.										

Example: If thermometers have an average (mean) reading of 0 degrees and a standard deviation of 1 degree for freezing water, and if one thermometer is randomly selected, find the probability that, at the freezing point of water, the reading is less than 1.58 degrees.

$$
\mathrm{P}(z<1.58)=
$$

Figure 5-6
Copyright © 2004 Pearson Education, Inc.

Example: If thermometers have an average (mean) reading of 0 degrees and a standard deviation of 1 degree for freezing water and if one thermometer is randomly selected, find the probability that, at the freezing point of water, the reading is less than 1.58 degrees.

$$
P(z<1.58)=0.9429
$$

The probability that the chosen thermometer will measure freezing water less than 1.58 degrees is 0.9429 .

Using TI:

Standard Normal Distribution
$P(z<a)$

1) 2nd VARS(DISTR)
2) Arrow down to normalcdf(
3) enter
4) VSNN , a , O, 1) enter

VSNN \rightarrow Very Small Negative Number

Using TI:

Slide 20
Standard Normal Distribution
Example: Find $P(z<1.58)$

This result was obtained earlier by directly using the Standard Normal Distribution table.

Copyright © 2004 Pearson Education, Inc.

Example: If thermometers have an average (mean) reading of 0 degrees and a standard deviation of 1 degree for freezing water, and if one thermometer is randomly selected, find the probability that it reads (at the freezing point of water) above -1.23 degrees.

$$
P(z>-1.23)=0.8907
$$

89.07\% of the thermometers have readings above - 1.23 degrees.

Copyright © 2004 Pearson Education, Inc.

Example: A thermometer is randomly selected.

Find the probability that it reads (at the freezing point of water) between -2.00 and 1.50 degrees.

The probability that the chosen thermometer has a reading between - 2.00 and 1.50 degrees is 0.9104 . Copyright © 2004 Pearson Education, Inc.

Using TI:

Standard Normal Distribution

Example: Find $\mathrm{P}(-2.00<\mathrm{z}<1.50)$
 final answer.
!

This result was obtained earlier by directly using the Standard Normal Distribution table.

Finding a z - score when given a

 probability Using Table A-21. Draw a bell-shaped curve, draw the centerline, and identify the region under the curve that corresponds to the given probability. If that region is not a cumulative region from the left, work instead with a known region that is a cumulative region from the left.
2. Using the cumulative area from the left, locate the closest probability in the body of Table A-2 and identify the corresponding z score.

Using TI:		Slide 35
Standard Normal Distribution		
Example: Find the \mathbf{z} - score if $\mathrm{P}(\mathrm{z}<\mathrm{a})=0.95$		
1) Select 2nd, VARS, arrow down to get to invNorm(enter to select	DSTIS DRAW 1: normalpdf 5 SinuNorm(5: tpdf 6: x^{2} Fdf $7 \downarrow x^{2} c d f$	
2) key in	$\text { inuNorm } \text { (0.95, 0, } 1$	
0.95, 0, 1)		
Copyright © 2004 Pearson Education, Inc.		

Using TI:
Standard Normal Distribution
$P(z<a)=L M A$

1) 2nd VARS(DISTR)
2) Arrow down to invNorm(
3) enter

LMA \rightarrow Left Most Area

Finding z Scores when Given Probabilities

Slide 39

Nonstandard Normal Distributions

If $\mu \neq 0$ or $\sigma \neq 1$ (or both), we will convert values to standard scores using Formula 5-2, then procedures for working with all normal distributions are the same as those for the standard normal distribution.

Formula 5-2

$$
z=\frac{x-\mu}{\sigma}
$$

Probability of Sitting Heights

 Less Than 38.8 Inches- The sitting height (from seat to top of head) of drivers must be considered in the design of a new car model. Men have sitting heights that are normally distributed with a mean of 36.0 in . and a standard deviation of 1.4 in . (based on anthropometric survey data from Gordon, Clauser, et al.). Engineers have provided plans that can accommodate men with sitting heights up to 38.8 in., but taller men cannot fit. If a man is randomly selected, find the probability that he has a sitting height less than 38.8 in . Based on that result, is the current engineering design feasible?

Copyright © 2004 Pearson Education, Inc

Using TI:
Non-Standard Normal Distribution
Example: Find $\mathrm{P}(\mathrm{x}<38.8)$ when $\mu=36.0$ and $\sigma=1.4$.

3) Enter to execute this operation and get the	
	38

This result was obtained earlier by converting to the Standard Normal Distribution and then using the table.

Probability of Weight between 140 pounds and 211 pounds ${ }^{\text {Slide } 50}$

In the Chapter Problem, we noted that the Air Force had been using the ACES-II ejection seats designed for men weighing between 140 lb and 211 lb . Given that women's weights are normally distributed with a mean of 143 lb and a standard deviation of 29 lb (based on data from the National Health survey), what percentage of women have weights that are within those limits?

Probability of Weight between 140 pounds and 211 pounds ${ }^{\text {slide } 53}$.

Probability of Weight between 140 pounds and 211 pounds

Total area from the left up to

Figure 5-14
Copyright © 2004 Pearson Education, Inc.

Probability of Weight between 140 pounds and 211 pounds

Using TI:
Non-Standard Normal Distribution
Example: Find $P(140<x<211)$ when $\mu=143$ \& $\sigma=29$.
3) Enter to execute this normalcof (140, 21
operation and get the
final answer.
This result was obtained earlier by converting to
the Standard Normal Distribution and then using
the table.
Why is this answer slightly different from the earlier
method?
Copyright e2004 Pearson Education, Inc.

Probability of Weight between

 140 pounds and 211 pounds weights between 140 lb and 211 lb .```
\mu= 143
\mu= 143
OR - 53.02% of women have
OR - 53.02% of women have
Total area from the left up to 211 lb is 0.9904

Figure 5-14 Copyright © 2004 Pearson Education, Inc.

Finding az-score when given a probability Using Table A-2
1. Draw a bell-shaped curve, draw the centerline, and identify the region under the curve that corresponds to the given probability. If that region is not a cumulative region from the left, work instead with a known region that is a cumulative region from the left.
2. Using the cumulative area from the left, locate the closest probability in the body of Table A-2 and identify the corresponding z score.

\section*{Cautions to keep in mind}
\(\qquad\)
1. Don't confuse z scores and areas. z scores are distances along the horizontal scale, but areas are regions under the normal curve. Table A-2 lists z scores in the left column and across the top row, but areas are found in the body of the table.
2. Choose the correct (right/left) side of the graph.
3. Az score must be negative whenever it is located to the left half of the normal distribution.
4. Areas (or probabilities) are positive or zero values, but they are never negative.

\[
z=2.05
\]

Figure 5-15
Copyright © 2004 Pearson Education, Inc

Find \(\mathrm{P}_{98}\) for Hip
Slide 65 Breadths of Men

The hip breadth of 16.5 in . separates
the lowest \(98 \%\) from the highest \(2 \%\)

Figure 5-15
Copyright © 2004 Pearson Education, Inc.

Procedure for Finding Values Using Table A-2 and Formula 5-2 Slide 62
1. Sketch a normal distribution curve, enter the given probability or percentage in the appropriate region of the graph, and identify the \(\boldsymbol{x}\) value(s) being sought.
2. Use Table A-2 to find the \(\mathbf{z}\) score corresponding to the cumulative left area bounded by \(\boldsymbol{x}\). Refer to the BODY of Table A-2 to find the closest area, then identify the corresponding \(z\) score.
3. Using Formula 5-2, enter the values for \(\mu, \sigma\), and the \(z\) score found in step 2, then solve for \(\boldsymbol{x}\).
\[
x=\mu+(z \cdot \sigma) \quad(\text { Another form of Formula } 5-2)
\]
(If \(z\) is located to the left of the mean, be sure that it is a negative number.)
4. Refer to the sketch of the curve to verify that the solution makes sense in the context of the graph and the context of the problem.

Copyright © 2004 Pearson Education, Inc.

Find \(\mathrm{P}_{98}\) for Hip Breadths of Men

Seats designed for a hip breadth up to 16.5 in. will fit \(98 \%\) of men.

Figure 5-15
Copyright © 2004 Pearson Education, Inc.
Using TI:
Non-Standard Normal Distribution slide 67 ,
P(x<a)=LMA
\begin{tabular}{l}
1) 2nd vARS(DISTR) \\
\begin{tabular}{l}
2) Arrow down to invNorm(\\
3) enter \\
4) LMA, \(\mu, ~ \sigma)\) enter \\
Mean \\
LMA Standard Deviation
\end{tabular} \\
Left Most Area \\
Copyright © 2004 Pearson Education, Inc.
\end{tabular}
\begin{tabular}{l}
Using TI: \\
Standard Normal Distribution \\
\begin{tabular}{l}
Example: Find the \(\mathbf{x}\) - score if \(\mathrm{P}(\mathrm{x}<\mathrm{a})=\mathbf{0 . 9 8}\) \\
when \(\boldsymbol{\mu}=14.4\) and \(\boldsymbol{\sigma}=1.0\). \\
\begin{tabular}{l}
3) Enter to execute this inuNormc. \(98,14.4\) \\
operation and get the \\
final answer. \\
This result was obtained earlier by directly using \\
the Standard Normal Distribution table.
\end{tabular} \\
Copyright © 2004 Pearson Education, Inc.
\end{tabular} \\
\hline
\end{tabular}

\section*{REMEMBER!}

Make the z score negative if the value is located to the left (below) the mean. Otherwise, the z score will be positive.
\begin{tabular}{|c|}
\hline Definition \\
Sampling Distribution of the mean \\
is the probability distribution of \\
sample means, with all \\
samples having the same sample \\
size \(n\). \\
\\
\\
\\
\end{tabular}

\section*{Definition}

Sampling Variability:
The value of a statistic, such as the sample mean \(\bar{x}\), depends on the particular values included in the sample.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Consider the population of 2,4 , and 6 . Select sample of size 2 with replacement.} \\
\hline Sample & Sample Mean & Sample Mean & Probability \\
\hline 2,2 & 2 & 2 & 1/9 \\
\hline 2,4 & 3 & 3 & 2/9 \\
\hline 2,6 & 4 & 4 & 3/9 \\
\hline 4,2 & 3 & 5 & 2/9 \\
\hline 4, 4 & 4 & 6 & 1/9 \\
\hline 4, 6 & 5 & & \\
\hline 6, 2 & 4 & & \\
\hline 6, 4 & 5 & & \\
\hline 6,6 & 6 & & \\
\hline
\end{tabular}

Consider the population of 2,4 , and 6 .
Select sample of size 2 with replacement.
Now
use your calculator to compute the mean and standard deviation of the sample means.
a) Enter sample means into L1
b) Enter corresponding probabilities into L2.
c) Stat, Calc, 1-var stat, L1, L2, enter

Now
a) Enter element of the population into L3.
b) Stat, Calc, 1-var stat, L1, L2, enter

Copyright© 2004 Pearson Education, Inc.

Consider the population of 2,4 , and 6.
Slide 81
Select sample of size 2 with replacement.

Did you notice that the mean of the sample means is equal to the mean of the population?
\[
\mu_{\bar{X}}=\mu
\]

Now divide the population standard deviation by the square root of the each sample size, in this case 2.

Is this answer familiar to you?
\[
\sigma_{\bar{X}}=\frac{\sigma}{\sqrt{n}}
\]

Copyright © 2004 Pearson Education, Inc.

\section*{Central Limit Theorem}

\section*{Given:}
1. The random variable \(x\) has a distribution (which may or may not be normal) with mean \(\mu\) and standard deviation \(\sigma\).
2. Samples all of the same size \(\boldsymbol{n}\) are randomly selected from the population of \(\boldsymbol{X}\) values.

\section*{Central Limit Theorem} Slide 84

\section*{Conclusions:}
1. The distribution of the sample means will,
as the sample size increases, approach a
normal distribution.
2. The mean of the sample means will be the population mean \(\mu\).
3. The standard deviation of the sample means
will approach \(\frac{\sigma}{\sqrt{\mathrm{n}}}\).
\[
\sqrt{n}
\]
\[
\sqrt{11}
\]

Interpretation of Sampling Distributions

Slide 82

We can see that when using a sample statistic to estimate a population parameter, some statistics are good in the sense that they target the population parameter and are therefore likely to yield good results. Such statistics are called unbiased estimators.

Statistics that target population parameters: mean, variance, proportion

Statistics that do not target population parameters: median, range, standard deviation Copyright © 2004 Pearson Education, Inc.

\section*{Practical Rules Commonly Used:}
1. For samples of size \(\boldsymbol{n}\) larger than 30, the distribution of the sample means can be approximated reasonably well by a normal distribution. The approximation gets better as the sample size \(\boldsymbol{n}\) becomes larger.
2. If the original population is itself normally distributed, then the sample means will be normally distributed for any sample size \(\boldsymbol{n}\) (not just the values of \(\boldsymbol{n}\) larger than 30).

\section*{Using TI}

Slide 87
When using normalcdf with sample size \(n=1\), enter the following four enteries in the order: normalcdf(LV, RV, \(\mu, \sigma)\).

Example: \(P(x>24)\) when \(\mu=26 \& \sigma=1.5\)
\(P(x>24)=\) normalcdf \((24,1000,26,1.5)\)

Answer:

\section*{Notation}
the mean of the sample means
\[
\mu_{\bar{x}}=\mu
\]
the standard deviation of sample mean
\[
\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}}
\]
(often called standard error of the mean)

Copyright © 2004 Pearson Education, Inc

\section*{Using TI}

When using normalcdf with sample size \(n>1\), enter the following four enteries in the order: norm alcdf(LV, R V , \(\left.\mu, \frac{\sigma}{\sqrt{n}}\right)\).

Example:
\(P(\bar{x}>24)\) when \(n=10, \mu=26 \& \sigma=1.5\)
\(P(\bar{x}>24)=\operatorname{normalcdf}\left(24,1000,26, \frac{1.5}{\sqrt{10}}\right)\)
Answer:

Example: Given the population of men has normally distributed weights with a mean of 172 lb and a standard deviation of 29 lb ,
a) if one man is randomly selected, find the probability that his weight is greater than 167 lb .
b) if 12 different men are randomly selected, find the probability that their mean weight is greater than 167 lb.

Example: Given the population of men has normally distributed weights with a mean of 172 lb and a standard deviation of 29 lb ,
a) if One man is randomly selected, the probability that his weight is greater than 167 lb . is 0.5675 .

Example: Given the population of men has normally distributed weights with a mean of 172 lb and a standard deviation of 29 lb ,
b) if 12 different men are randomly selected, find the probability that their mean weight is greater than 167 lb .

Copyright © 2004 Pearson Education, Inc.

\section*{Sampling Without Replacement}
\[
\text { If } n>0.05 \mathrm{~N}
\]
\[
\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}} \underbrace{\sqrt{\frac{N-n}{N-1}}}_{1}
\]
finite population correction factor

Copyright © 2004 Pearson Education, Inc.

\section*{Procedure for Using a Normal Distribution to Approximate slide 95 . a Binomial Distribution}
1. Establish that the normal distribution is a suitable approximation to the binomial distribution by verifying \(n p \geq 5\) and \(n q \geq 5\).
2. Find the values of the parameters \(\mu\) and \(\sigma\) by calculating \(\mu=n p\) and \(\sigma=\sqrt{n p q}\).
3. Identify the discrete value of \(\boldsymbol{x}\) (the number of successes). Change the discrete value \(x\) by replacing it with the interval from \(x-0.5\) to \(x+0.5\). Draw a normal curve and enter the values of \(\mu, \sigma\), and either \(x\) -0.5 or \(\boldsymbol{x}+0.5\), as appropriate.

Example: Given the population of men has normally distributed weights with a mean of 172 lb and a standard deviation of 29 lb,
a) if one man is randomly selected, find the probability that his weight is greater than 167 lb .
\[
P(x>167)=0.5675
\]
b) if \(\mathbf{1 2}\) different men are randomly selected, their mean weight is greater than 167 lb .
\[
P(\bar{x}>167)=0.7257
\]

It is much easier for an individual to deviate from the mean than it is for a group of 12 to deviate from the mean. Copyright© 2004 Pearson Education, Inc.

Approximate a Binomial Distribution with a Normal Distribution if:
\[
\begin{aligned}
& n p \geq 5 \\
& n q \geq 5
\end{aligned}
\]
\[
\text { then } \mu=n p \text { and } \sigma=\sqrt{n p q}
\]
and the random variable has
a
 distribution. (normal)

Copyright © 2004 Pearson Education, Inc.

Procedure for Using a Normal Distribution to Approximate slide96. a Binomial Distribution

\section*{continued}
4. Change \(x\) by replacing it with \(x-0.5\) or \(x+0.5\), as appropriate.
5. Find the area corresponding to the desired probability.

\section*{Definition}

When we use the normal distribution (which is continuous) as an approximation to the binomial distribution (which is discrete), a continuity correction is made to a discrete whole number \(x\) in the binomial distribution by representing the single value \(x\) by the interval from
\[
x-0.5 \text { to } x+0.5
\]

Copyright © 2004 Pearson Education, Inc

\section*{Procedure for Continuity Corrections}

Slide 99
continued
4. Now determine whether the value of \(X\) itself should be included in the probability you want. Next, determine whether you want the probability of at least \(X\), at most \(X\), more than \(X\), fewer than \(X\), or exactly \(\boldsymbol{X}\). Shade the area to the right or left of the strip, as appropriate; also shade the interior of the strip itself if and only if \(X\) itself is to be included. The total shaded region corresponds to probability being sought.
\(x=\) exactly 120

Interval represents discrete number 120 Copyright © 2004 Pearson Education, Inc

\section*{Procedure for Continuity Corrections}
1. When using the normal distribution as an approximation to the binomial distribution, always use the continuity correction.
2. In using the continuity correction, first identify the discrete whole number \(\boldsymbol{X}\) that is relevant to the binomial probability problem.
3. Draw a normal distribution centered about \(\mu\), then draw a vertical strip area centered over \(\boldsymbol{X}\). Mark the left side of the strip with the number \(X-0.5\), and mark the right side with \(X+0.5\). For \(X=120\), draw a strip from 119.5 to \(\mathbf{1 2 0 . 5}\). Consider the area of the strip to represent the probability of discrete number \(\boldsymbol{X}\).
continued
```

